skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shen, Yin-Lin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 4D printing technology enables the fabrication of constructs capable of shape transformation when exposed to external stimuli. Epoxy‐based shape memory polymers (SMPs) have shown great potential for various 4D printing applications. However, due to their thermocurable nature, the fabrication of 4D constructs using epoxy‐based materials is often limited to a mold casting strategy, limiting design flexibility and often yielding flat structures. In this work, photocurable smart 4D inks are developed by integrating polyethylene glycol diacrylate (PD) into epoxy‐based materials. These inks undergo a two‐step crosslinking process: i) photocuring of the PD network, and ii) thermocuring of the SMP, resulting in an interpenetrating polymer network (IPN). The inclusion of PD in the 4D inks not only enables the formation of complex shapes via the restructuring step but also allows for fine‐tuning of mechanical properties and thermal responsiveness. Additionally, these inks offered greater versatility in employable fabrication techniques, including mold casting, photolithography, and stereolithography (SLA). 
    more » « less